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[1] The correlation between the amplitude of the MHD turbulence in the upstream solar
wind and the amplitude of the Earth’s geomagnetic activity indices AE, AU, AL, Kp, ap,
Dst, and PCI is explored. The amplitude of the MHD turbulence is determined by the
fluctuation amplitude of the solar wind magnetic field. This ‘‘turbulence effect’’ in solar
wind/magnetosphere coupling is more easily discerned when the interplanetary magnetic
field (IMF) is northward, but the effect is also present when the IMF is southward. The
magnitude of the effect is the same for northward and southward IMF, accounting for
about 150 nT of the variability of the AE index. Tests are performed that conclude (1) that
the turbulence effect is not caused by the turbulence amplitude acting as a proxy for jBj in
the solar wind and (2) that reversals of the IMF from northward to southward in the
turbulent fluctuations is not the cause of the correlations. An expression is derived for the
total viscous-shear force on the surface of the magnetosphere; improved solar wind/
magnetosphere correlations result when this expression is used. With insight from fluid-
flow experiments, the turbulence effect is interpreted as an enhanced viscous coupling of
the solar wind flow to the Earth’s magnetosphere caused by an eddy viscosity that is
controlled by the amplitude of MHD turbulence in the upstream solar wind: more
upstream turbulence means more momentum transfer from the magnetosheath into the
magnetosphere, resulting in more stirring of the magnetosphere, which produces enhanced
geomagnetic activity indices. INDEX TERMS: 2784 Magnetospheric Physics: Solar wind/

magnetosphere interactions; 2722 Magnetospheric Physics: Forecasting; 2149 Interplanetary Physics: MHD

waves and turbulence; 7863 Space Plasma Physics: Turbulence; KEYWORDS: freestream turbulence, solar

wind/magnetosphere coupling, eddy viscosity, Reynold’s stress, viscous drag, astrophysical flows
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1. Introduction

[2] The supersonic, superAlvenic, solar wind interacts
with the dipole magnetic field of the Earth, which forms
an impenetrable obstacle. Given a geometry for a fluid-flow
problem, the key parameter to describe the phenomenology
of the flow pattern and the coupling of the flow to
boundaries and obstacles is the Reynolds number

Re ¼ v0L=nkin; ð1Þ

a dimensionless number constructed from a typical velocity
v0 in the flow, a typical lengthscale L for the geometry, and
the kinematic viscosity nkin of the fluid. The solar wind, the
magnetosheath, and the magnetosphere are high Reynolds
number systems. For these hot, low-density plasma flows,
the kinematic viscosities nkin are in the 10

3–106 cm2/s range

(cf. equation 2.23 of Braginskii [1965] and see Table 1), the
flow velocities v0 are in the tens to hundreds of kilometer
per second range, and the scale sizes L0 are in the 104–107

km range, the Reynolds numbers Re = v0L0/nkin are in the
1012–1014 range (see Table 1). Similarly, with electrical
conductivities in the 1014–1017/s range [see section 5.2.3.3
of Alfven and Falthammar, 1963], the magnetic Reynolds
numbers,

Rem ¼ v0L4ps=c2; ð2Þ

of these flows are extremely large. As expected for high
Reynolds number systems [Montgomery, 1987], the con-
vection is not smooth but is dominated by fluctuations and
the magnetic fields are distorted. This is true of the solar
wind [e.g., Tu and Marsch, 1995], of the magnetosheath
[e.g., Sonett and Abrams, 1963; Safrankova et al., 2000],
and of the magnetosphere [e.g., Borovsky et al., 1997].
Despite the fact that the magnetosphere and the solar wind
are extremely high Reynolds number plasmas, investiga-
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tions into the phenomenology and consequences of
turbulence in magnetospheric physics are rare [Haerendel,
1978; Montgomery, 1987; Antonova and Ovchinnikov,
1996; Borovsky et al., 1997; Zelenyi et al., 1998; White et
al., 2001; Borovsky and Funsten, 2003].
[3] As is the case for ordinary fluids [see sections 1.4 and

7.1 of Tennekes and Lumley, 1972; Townsend, 1976; Smits
and Dussauge, 1996], turbulence in the MHD flows of the
solar wind, magnetosheath, and magnetosphere may pro-
duce enhanced mixing and enhanced momentum transport
which can lead to gross changes in the large-scale flow
patterns. Following a suggestion of Borovsky and Gosling
[2001], in this report one possible effect of turbulence will
be explored: the enhanced viscous coupling of the magneto-
sheath to the magnetosphere owed to an eddy viscosity
controlled by the level of MHD turbulence in the upstream
solar wind.

2. An Experiment of Interest for Solar-Terrestrial
Physics

[4] The suggestion of Borovsky and Gosling [2001] is
that there would be a positive correlation between the level
of geomagnetic activity and the amplitude of the MHD
turbulence in the solar wind. This suggestion was motivated
by the results of high Reynolds number wind-tunnel experi-
ments in which fluids interact with obstacles (spheres,
cylinders, airfoils, and blades) placed in the flows (see
Figure 1). The magnetosphere’s interaction with the solar
wind has analogies with the interaction of an object with a
fluid flow [cf. Borovsky et al., 1998]. One must of course
be aware of the limitations of using fluid experiments to
make inferences about the solar wind/magnetosphere sys-
tem: fluids do not include many plasma effects, and the
obstacles in fluid experiments are not magnetic dipoles.
One must also be aware of the limitations of our MHD
simulation tools for studying the solar wind/magnetosphere
problem, like an inability to include boundary layer pro-
cesses, and most pertinent here, restrictively low Reynolds
numbers owing to numerical diffusivity and poor grid
resolution. Each approach can yield insights but not the
complete story.

[5] Ordinarily, in obstacle-in-flow experiments, care is
taken to ensure that the level of turbulence in the upstream
flow is minimal. Among other things, this helps to ensure a
reproducibility to the experiments [see section 8 of Seeger,
1967] and helps to simplify the interpretation of results. In
some recent experiments (see Figure 1), grids were placed
upstream of the obstacles to inject controlled levels of
turbulence into the upstream fluid. Changing the properties
of the grids changed the properties of the upstream
turbulence. The interaction of the fluid flow with the
obstacle was studied versus the amplitude of the upstream
(freestream) turbulence. Some results are summarized in
Table 2.
[6] One observed consequence is an increase in the

viscous drag (= skin friction) on an obstacle produced by
an increase in the amplitude of the upstream turbulence
[Blair, 1983a, 1983b; Pal, 1985]. This enhanced viscous
drag comes about from an eddy viscosity (= turbulent
viscosity = Reynolds stress) that is owed to the velocity
fluctuations in the upstream fluid; this eddy viscosity can
transfer momentum across boundary layers, which adds to
the momentum transport to a surface. As depicted in Figure
2, the skin friction can increase by several tens of percent
when turbulence intensities dv/v0 increase by less than
10%, where dv is the rms fluctuation velocity upstream
and v0 is the mean flow velocity relative to the obstacle
[Blair, 1983b].
[7] A second consequence is a shortening of the wake

behind an obstacle produced by an increase in the amplitude
of the upstream turbulence [Castro and Robins, 1977; Pal,
1985; Wu and Faeth, 1994a; Zhang and Han, 1995;
Murawaski and Vafai, 2000]. The wake reduction with an
increase in freestream turbulence is caused by an increase in
the eddy diffusion, which increases the transport of mo-
mentum perpendicular to the flow into the wake region from
the flow outside.
[8] A third consequence is the alteration of the total drag

force on an obstacle in a flow associated with an increase in
the amplitude of the upstream turbulence [Courchesne and
Laneville, 1982; Hoffmann, 1991; Littman et al., 1996].
Since the total drag force is the sum of a viscous drag and a
pressure drag, there are two competing effects that come
into play when the intensity of the upstream turbulence is
increased. Owing to an increase in the eddy viscosity, the
viscous drag increases. However, owing to an increase in

Table 1. Typical Turbulence and Plasma Parameters for the Solar

Wind, the Magnetosheath, and the Magnetotaila

Solar Wind Magnetosheath Magnetotail

dv, km/s 14 40 75
dB, nT 3 12 7
dv/v0 0.03 0.2 5
dB/B0 0.5 0.5 0.5
n, cm�3 7 25 0.3
Ti, keV 0.01 1 7
Te, keV 0.01 0.2 1
b 0.75 15 5
nkin, cm

2/s 1.6 � 106 5.6 � 104 1.2 � 103

s, s�1 1.9 � 1014 1.6 � 1016 1.6 � 1017

v0, km/s 400 200 15
L (RE) 5000 5 6
Re 1 � 1014 1 � 1012 5 � 1012

Rem 3 � 1014 1 � 1013 1 � 1013

aNote that the values of all three vary considerably from day to day.

Figure 1. A sketch of a typical experiment to study the
effect of upstream turbulence on the coupling of a fluid flow
to an obstacle in the flow.
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the eddy diffusion, the flow void behind an obstacle is filled
more effectively and so the pressure difference between the
front and back of the obstacle is reduced, resulting in a
reduction in the pressure drag. For most obstacle shapes, the
latter effect is greater and the total drag force on an obstacle
is reduced by an increase of the amplitude of the upstream
turbulence. Obstacle shapes such as the Earth’s magneto-
sphere that have tapered downstream regions (e.g., obstacles
with aft fairings) tend to have significantly reduced pressure
drag at the expense of slightly enhanced viscous drag
[Hoerner, 1965; Snyder et al., 2000].
[9] In parameterizing the effects of the level of upstream

turbulence, it is convenient to calculate the eddy viscosity
[Tennekes and Lumley, 1972; Borovsky et al., 1997]

neddy ¼ Cndv2tauto ð3Þ

from the amplitude dv and correlation time tauto of the
upstream velocity fluctuations (with Cn being a constant
coefficient of size 0.06–0.09) and then add this eddy
viscosity to the molecular kinematic viscosity nkin of the
fluid to obtain a total viscosity, and then to construct an
‘‘effective’’ Reynolds number Reeff from this total viscosity

Reeff ¼ v0L= nkin þ neddy
� �

ð4Þ

[e.g., Volino, 1998; Wu and Faeth, 1994b]. For wakes
produced behind obstacles in turbulent flows, Wu and Faeth
[1994a, 1994b] found that the wakes, which were
themselves turbulent and which changed with changes in
the amplitudes of the upstream turbulence, when time
averaged appeared to be similar to laminar wakes at
Reynolds numbers equal to the effective Reynolds numbers
calculated accounting for the upstream-turbulence eddy
viscosity. The replacement of nkin by nkin + neddy in the fluid
equations works well for numerically simulating freestream-
turbulence experiments with the use of laminar-flow
computer schemes [Volino, 1998]. Such a technique, when
properly implemented, may be pertinent to efforts to
numerically simulate the solar wind driven magnetosphere
with low Reynolds number MHD codes that cannot
reproduce the turbulence that is seen in satellite data [cf.
Yoshizawa, 1991; Theobalk et al., 1994; Agullo et al.,
2001].
[10] The amplitude of upstream turbulence is of concern

for several practical applications: the lift and drag of aircraft
wings [Hoffmann, 1991; Huang and Lee, 1999], the wind
forces on buildings and structures [Barriga et al., 1977;

Zdravkovich and Carelas, 1997], air drag on automobiles
[Bearman, 1978], drag and heat transfer from turbine blades
[Fridman, 1997; Murawaski and Vafai, 2000], forces on
underwater structures [Torum and Anand, 1985], and the
settling of particles suspended in fluids [Brucato et al.,
1998]. This report will focus on the first finding listed in
Table 2, the increase of the viscous drag (skin friction) with
an increase in the amplitude of the upstream turbulence,
with application to the solar wind/magnetosphere flow
problem.

3. Eddy-Viscosity Hypothesis

[11] The physical interpretation of the fluid experiments
of section 2 is that the upstream turbulence produces an
eddy viscosity in the fluid and that this eddy viscosity acts
in addition to molecular viscosity to couple the fluid flow to
the obstacles [Wu and Faeth, 1994b; Volino, 1998]. With an
understanding that the solar wind is not a simple fluid, but
with a hope that high Reynolds number fluid experiments
can compliment our low Reynolds number MHD computer-
simulation capability to provide unique insights about the

Figure 2. From a flat plate in a wind tunnel, the increase
in the viscous drag force (= skin friction) of the wind on the
plate is plotted as a function of the amplitude of the
upstream turbulence (after Figure 3 of Blair [1983b]).

Table 2. Summary of the Effects of Upstream Turbulence in Fluid Experiments

Less Upstream Turb. More Upstream Turb. References

Skin friction less viscous
drag

more viscous drag Blair, 1983a, 1983b; Pal, 1985

Wake length wake downstream
longer

wake downstream
shorter

Castro and Robins, 1977; Pal, 1985;
Wu and Faeth, 1994a; Zhang and Han, 1995;
Murawaski and Vafai, 2000

Pressure drag more pressure drag less pressure drag Courchesne and Laneville, 1982; Hoffmann, 1991;
Littman et al., 1996

neddy less eddy viscosity more eddy viscosity Volino, 1998; Wu and Faeth, 1994a, 1994b;
Pal, 1985

Reeff higher effective
Reynolds

lower effective
Reynolds

Volino, 1998; Wu and Faeth, 1994a, 1994b

BOROVSKY AND FUNSTEN: UPSTREAM TURBULENCE SMP 13 - 3



solar wind driving of the magnetosphere, the hypothesis that
there is an increase in the viscous interaction between the
solar wind and the magnetosphere with an increase in the
amplitude of solar wind turbulence is investigated in this
report.
[12] One quantitative measure of the coupling of the solar

wind to the magnetosphere is the strength of the current
systems measured by the various geomagnetic activity
indices [e.g., Kamide and Slavin, 1986]. As suggested by
Borovsky and Gosling [2001], if there is an enhanced
viscous interaction controlled by the amplitude of the
turbulence in the solar wind, then there should be correla-
tions between the solar wind turbulence amplitude and the
geomagnetic indices. Although largely ignored at present,
such correlations have been found in the past [Ballif et al.,
1967, 1969; Hirshberg and Colburn, 1969; Bobrov, 1973;
Garrett, 1974; Garrett et al., 1974]. Two physical interpre-
tations of these correlations have been given. (1) That the
correlations are owed to a filter effect wherein AC electric
fields of the solar wind are able to penetrate into the
magnetosphere better than DC electric fields [Garrett et
al., 1974], so when solar wind fluctuations are larger, the
dawn-to-dusk solar wind electric field gets into the magne-
tosphere more effectively and so the solar wind can drive
the magnetosphere harder. (2) That the fluctuations of the
solar wind produce locally enhanced surface currents at the
magnetopause which drives magnetic field line reconnec-
tion harder [Schindler, 1979], which enhances the total
reconnection rate leading to a stronger driving of the
magnetosphere by the solar wind. Both of these interpreta-
tions are consistent with a turbulence effect acting to
increase the geomagnetic indices when the interplanetary
magnetic field (IMF) is southward, but not acting when the
IMF is northward.
[13] The hypothesis addressed in this report is that the

correlations between the amplitude of the solar wind turbu-
lence and the geomagnetic indices owe to an eddy-viscosity
effect. A test of this hypothesis is that the turbulence effect
on the geomagnetic indices should be present both for
northward and southward IMF. That test is performed in
the following section.

4. Correlations Between Solar Wind Turbulence
Amplitudes and Geomagnetic Activity Indices

[14] To examine the correlations between solar wind
quantities and the geomagnetic indices of the Earth, 3 years
of OMNI solar wind data are used, 1979–1981, supple-
mented by hourly averaged values of the auroral-electrojet
indices AE, AL, and AU [Rostoker, 1972], and the polar cap
index PCI (Thule) [Troishichev et al., 1988]. The OMNI data
set contains the indices Kp and Dst and the ap index can be
constructed from the values of Kp using Table 6 of Mayaud
[1980]. The OMNI data [Papitashvili et al., 2000] was
constructed by converting high time resolution solar wind
flow and magnetic field measurements into hourly averaged
quantities. For 1979–1981, the OMNI data are almost
exclusively from ISEE-3 and IMP-8. The OMNI solar wind
measurements are time shifted from the solar wind satellite
(typically ISEE-3) to the Earth using the solar wind convec-
tion velocity. As an indicator of the level of turbulence in the
solar wind, the standard deviations of the magnetic field

measurements going into each of the hourly averages is
used. Two measures of the amplitude of the turbulence are
constructed from these standard deviations. The first mea-
sure is dByz, which is defined as dByz = [(sBy)

2 + sBz)
2]1/2,

where sBy is the standard deviation of the By values going
into the hourly average and where sBz is the standard
deviation of the Bz values going into the hourly average.
The y and z directions are both approximately normal to the
direction of flow of the solar wind. The second measure is
dByz/B, where B is the hourly averaged magnitude of the
solar wind magnetic field. For the purposes of this study, it is
unimportant which measure of turbulence amplitude is used:
the various measures that can be constructed from the
magnetic field fluctuations are all highly correlated with
each other. As shown in Appendix A, the hourly averaged
values of dByz in the solar wind have autocorrelation time of
�5 hours, similar to the autocorrelation time for the hourly
averaged values of vBz. This�5-hour autocorrelation time is
caused by the time variation of the amplitude of the solar
wind MHD turbulence. The time series of dByz values also
has a component with a faster autocorrelation time (�1 hour
in the OMNI data, �5 min when examined with higher time
resolution solar wind data: see Appendix A). This fast-
autocorrelation-time component is probably owed to the
presence of rotational and tangential discontinuities in the
solar wind, as discussed in Appendix A.
[15] To ensure that the standard deviations of the mag-

netic field measurements are not constructed from only a
few measurements, hourly averages that used less than 60
time samples are removed. Additionally, to ensure that the
standard deviations of the field measurements are not
anomalously high because of shock waves in the solar
wind, 3-hour-long intervals were removed around 127
interplanetary shocks, with the shock times supplied by J.
Gosling (private communication, 2002) from his survey of
ISEE-3 satellite data. The first of these cleaning procedures
eliminates the ISEE-3 data in the OMNI data set from the
study, leaving the IMP-8 magnetic field measurements with
�15 s time resolution to be used to calculate dByz and the
hourly averaged values of B and Bz. The two cleaning
procedures together remove �61% of the OMNI hourly
averaged data in 1979–1981. As discussed in Appendix A,
rotational/tangential discontinuities are not removed.
[16] As an indicator of the level of turbulence in the solar

wind, the level of magnetic field fluctuations is used,
whereas in upstream-turbulence experiments in the labora-
tory the level of velocity fluctuations is used. Unfortunately,
owing to the difficulties in measuring the flow velocity of
the solar wind plasma to sufficient accuracy, the standard
deviations of the flow-velocity fluctuations in the OMNI
data set is not an adequate measure of the turbulence
amplitude. However, in MHD, magnetic field fluctuations
cannot occur without velocity fluctuations [e.g., section 7.2
of Parker, 1979]. In the solar wind, the amplitude of
velocity fluctuations is in general tied to the amplitude of
the magnetic field fluctuations (cf. Figure 8 of Matthaeus
and Goldstein [1982] or Figure 4 of Roberts et al. [1990])
and a measurement of one is equivalent to a measurement of
the other. With a time resolution of 15 s, the 1-hour averages
of the standard deviations of the magnetic field measure-
ments pick up frequencies in the 10�4–10�2 Hz range,
which is in the inertial range of the solar wind MHD
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turbulence [Leamon et al., 1998; Smith et al., 2001]. Since
the spectral shape of the inertial range is a constant, mea-
suring the amplitude of the turbulence in one frequency band
suffices to measure the intensity of the turbulence (C. Smith,
private communication, 2002). Note that even if there were
magnetic field fluctuations with no velocity fluctuations, the
Reynolds-averaged MHD equations still have a kinetic
Reynolds stress [cf. Yoshizawa and Yokoi, 1996; Fontan,
1999], i.e., they still have an eddy viscosity that depends on
the amplitude of the magnetic field fluctuations.
[17] In Figure 3 the various geomagnetic indices are

plotted as functions of vBz of the solar wind. A large
amount of scatter in the data have been removed in this
figure by sorting the data with respect to vBz and then
performing 1000-point running statistical analyses of the
indices, which uncovers trends that underlie scatter in the
data points. As can be seen, for vBz positive, which is Bz

positive and which is IMF northward, there is not much
dependence of the indices on vBz, but for vBz negative,
which is Bz negative and which is IMF southward, the
magnitudes of the indices increase as the magnitude of vBz

increases, noting that AL and Dst are negative. Because the
behaviors of the indices differ for northward and for
southward IMF, and because the vBz effect on the indices
is so strong, the coupling of the solar wind to the magne-
tosphere is examined separately for northward and south-
ward IMFs.
[18] Two subsets of data are extracted from the 3 years of

OMNI data plus geomagnetic indices, one subset for a
northward-IMF regime with 1000 nT km/s < vBz < 3000
nT km/s and one subset for a southward-IMF regime with
1000 nT km/s < �vBz < 3000 nT km/s. For the two subsets,
the various linear correlation coefficients rcorr (see Appen-
dix B) between the driver quantities vBz, dByz, dByz/B, and B
and the geomagnetic activity indices AE, AL, AU, Kp, Dst,
ap, and PCI are displayed in Table 3 (northward) and Table
4 (southward). Correlation at the 95% confidence level
occurs for correlation coefficients >2/N1/2 [e.g., section IX
of Beyer, 1966; section 4.8.1 of Bendat and Piersol, 1971],
where N is the number of points used to calculate the linear
correlation. (See also Appendix B for a discussion of this
confidence level.) For the �1700 data points in each subset,
definite correlation occurs for correlation coefficients great-
er than �±4.8%. As can be seen by comparing the two
tables, vBz is a strong driver of the geomagnetic indices (i.e.,
there is a significantly nonzero correlation coefficient) for
southward IMF (Table 4), but vBz is not so clearly a driver for
northward IMF (Table 3). This is as expected (see Figure 3).
The two measures of turbulence amplitude in the solar
wind, dByz and dByz/B, have significant correlation with
the geomagnetic indices AE, AL, AU, Kp, ap, and PCI,
both for northward and for southward IMF, with the
correlation being stronger (or clearer) for northward IMF.
Note that all of the turbulence-measure correlations are well
beyond the ±4.8% level.
[19] The increases in the geomagnetic activity indices

with increasing amplitudes of solar wind turbulence are
shown in Figure 4 for northward IMF. To see the trends
underlying scatter in the data, the hourly averaged data is
sorted according to the level of turbulence dByz and then
200-point running averages of the indices are performed.
From Tables 3 and 4 and Figure 4 it can be concluded that

the amplitude of the turbulence in the upstream solar wind
does affect the geomagnetic indices of the Earth, with
geomagnetic activity increasing as the level of turbulence
increases. This conclusion is particularly clear for northward
IMF. This is consistent with the hypothesis that enhanced
turbulence upstream leads to enhanced coupling of the solar
wind to the magnetosphere.
[20] As can be seen in Figure 4, the variation of dByz

contributes to about 150 nT of the variability of the AE
index. Looking at Figure 3, this 150 nT is smaller than the
several hundred nanotesla variability of AE associated with
the variation of vBz. Using the 200-point running averages
of Figure 4, the sizes of the ranges of variation of the hourly
averaged indices AE, AL, AU, and PCI as dByz varies under
northward IMF are shown in the first column of Table 5.
Then 200-point running averages of the indices versus vBz

are constructed (similar to the 1000-point running medians
of Figure 3) and the sizes of the ranges of variation of the

Figure 3. The various geomagnetic activity indices are
plotted as function of vBz of the solar wind. The hourly
averaged data is sorted by vBz and then 1000-point running
medians are calculated. Note that the Kp index has discrete
values. The ap index, which has a behavior very similar to
Kp, is not shown. Note also that there is zero time lag
between the solar wind and the indices in this figure.
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indices as vBz varies under southward IMF are calculated
and shown in the second column of Table 5. To compare the
amount of variation owed to the turbulence effect versus the
amount of variation owed to vBz, the ratios of the ranges are
taken (column 2 divided by column 3) and these ratios (in
percent) are displayed in the fourth column of Table 5. As
can be seen, the variation in the geomagnetic indices caused
by the level of solar wind turbulence is a few tens of percent
as large as the variation caused by vBz. Note that there is a
significant difference in the ratio for AL and for AU; the
turbulence effect is much more important for AU than it is
for AL. For AU the turbulence effect is �44% of the size of
the vBz effect. (Note in Table 3 too that for the drivers dByz

and dByz/B, the correlation coefficients are higher for AU
than they are for AL under northward IMF.) AU is some-
times considered to be a measure of the directly driven
response of the dayside magnetosphere and AL is a measure
of the directly driven plus loading-unloading response of the
nightside magnetosphere [e.g., Goertz et al., 1993].
[21] Note in Tables 3 and 4 that the correlations between

the turbulence amplitudes and the Dst index are weak at
best. The Dst index is a measure of the amount of plasma
pressure in the inner magnetosphere [Rostoker, 1972; Lie-
mohn et al., 2001], whereas the other indices are measures
of convective activity in the outer magnetosphere. As will
be seen below, the correlation between the amplitude of the
solar wind turbulence and Dst improves if a several-hour
time lag is introduced between the solar wind measurements
and the measurement of Dst.
[22] As can be seen in Tables 3 and 4, there are significant

correlations between the magnitude B of the solar wind
magnetic field and the geomagnetic indices. Note also in

Tables 3 and 4 that the correlations between dByz and the
geomagnetic indices are higher than the correlations between
dByz/B and the geomagnetic indices. There are strong posi-
tive correlations between the turbulence amplitude dByz and
the magnitude B: for the northward-IMF data the correlation
is +34.6% and for the southward-IMF data it is +39.1%. To
ensure that the correlations of the geomagnetic indices with

Table 3. Linear Cross-Correlation Coefficients rcorr (In Percent)

Between Driver Functions (Columns) and Geomagnetic Activity

Indices (Rows) for Northward Interplanetary Magnetic Field (1000

nT km/s < vBz < 3000 nT km/s)a

vBz dByz dByz/B B

AE �3.3 +33.6 +23.9 +17.2
AL +3.1 �27.9 �19.8 �13.9
AU �3.2 +36.2 +25.8 +19.3
Kp +10.9 +45.8 +34.4 +22.8
Dst �7.9 �11.4 �5.7 �11.1
ap +10.4 +41.8 +28.0 +22.5
PCI �8.5 +31.5 +18.8 +21.9

aOne thousand six hundred fifty-six points go into each correlation, and
the 95% confidence level of correlation is ±5.0%. There is no time lag
between the solar wind quantities and the geomagnetic activity indices.

Table 4. Linear Cross-Correlation Coefficients rcorr (In Percent)

Between Driver Functions (Columns) and Geomagnetic Activity

Indices (Rows) for Southward Interplanetary Magnetic Field (1000

nT km/s < �vBz < 3000 nT km/s)a

vBz dByz dByz/B B

AE �44.5 +15.2 +7.0 +20.8
AL +44.3 �13.6 �6.6 �16.7
AU �30.7 +13.1 +5.4 +21.0
Kp �46.1 +39.4 +27.1 +35.7
Dst +32.6 �7.4 �1.5 �17.6
ap �42.3 +39.2 +23.8 +36.6
PCI �38.5 +12.1 +4.1 +18.1

aOne thousand seven hundred forty-two points go into each correlation,
and the 95% confidence level of correlation is ±4.8%. There is no time lag
between the solar wind quantities and the geomagnetic activity indices.

Figure 4. For northward interplanetary magnetic field
(IMF) (1000 nT km/s < vBz < 3000 nT km/s) the various
geomagnetic activity indices are plotted as functions of the
amplitude of upstream turbulence dByz in the solar wind.
The hourly averaged data is sorted by dByz and then 200-
point running averages are performed.

Table 5. For 200-Point Running Averages of the Data, the Range

of Variation of the Hourly Indices AE, AL, AU, and PCI are

Shown for dByz Under Northward Interplanetary Magnetic Field

(Second Column) and for vBz Under Southward Interplanetary

Magnetic Field (IMF) (Third Column)a

Range of
Variation With dByz

for Northward IMF

Range of Variation
With vBz for
Southward IMF

Ratio of dByz

Variation to vBz

Variation, %

AE 150 nT 670 nT 22
AL 79 nT 493 nT 16
AU 72 nT 164 nT 44
PCI 1.0 3.8 26

aThe ranges are compared in the fourth column.
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dByz are not owed to a magnitude of B effect in the driving of
the geomagnetic indices, the effect of B on the indices is
removed and the correlations with dByz are then rechecked.
To remove the magnitude of B effect, the OMNI data is
selected for a limited range of B (8 nT < B < 10 nT), and the
correlations between the drivers and the geomagnetic activ-
ity indices are repeated. The results appear in Table 6 for
northward IMF (1000 nT km/s < vBz < 3000 nT km/s), where
the turbulence-amplitude effect is clearest. As can be seen in
Table 6, restricting B removes any significant correlations
between the indices and B, but the correlations of the indices
with the turbulence amplitude remain. Hence the correla-
tions between the amplitude dByz of the solar wind turbu-
lence and the geomagnetic activity indices are not owed to a
magnitude of B effect, where dByz acts as a proxy for B.
[23] Another effect to check against is the possibility that

the correlations between the amplitude of turbulence and the
geomagnetic indices are owed to fraction-of-an-hour long
southward turnings of the IMF even though the hourly
averaged value of Bz is northward. Larger amplitudes of
turbulence would have a larger likelihood of a Bz reversal and
hence the stronger driving of the magnetosphere for larger
amplitudes of turbulence. This would be a high-frequency
analogy of the HILDCAA effect (see, for example, Figure 12
of Tsurutani et al. [1995]). A test as to whether this Bz-
reversal effect is responsible for the correlations between the
amplitude of the solar wind turbulence under northward IMF
and the AE index is performed as follows. Only data where
the hourly averaged value of Bz is positive (northward) is
retained and sBz/hBzi is calculated, where sBz is the standard
deviation of all Bz values during the hour and hBzi is the
average value of Bz for the hour. A value of sBz/hBzi much
greater than unity means that during that hour it was likely
that there was a brief interval of southward IMF even though
the hourly average of Bz was positive. A value of sBz/hBzi
much less than unity means that during that hour it was very
unlikely that there was a brief interval of southward IMF.
That is, for values sBz/hBzi� 1 the Bz-reversal effect is ruled
out as a cause of any correlation between dByz and AE. The
linear correlation coefficient rcorr between dByz and AE is
calculated for various restricted ranges of sBz/hBzi and the
correlation coefficient is plotted in Figure 5. As can be seen,
if the correlation is plotted between dByz and AE for
essentially all values of sBz/hBzi that occur (right-hand edge
of graph) a correlation coefficient of 0.339 (= 33.9%) is
obtained. As the values of sBz/hBzi are restricted to smaller
and smaller values (moving toward the left on the graph), the
correlation coefficient rcorr is reduced. For values of sBz/hBzi

< 0.75, reversals of Bz into the southward-Bz regime are
unlikely (as indicated on the figure). In this range of sBz/hBzi
values a correlation between dByz and AE remains, but the
correlation coefficient rcorr is weaker than the correlation
coefficient for the full range of sBz/hBzi values. But then, the
variance s2(dByz) of dByz values is also reduced, so a reduced
correlation coefficient is expected [cf. Pagano, 1981]. The
question is, is the correlation coefficient rcorr less than
expected for the reduced range of dByz variance? To answer
this, a gedanken experiment is performed (Figure 6). Here a
string of points x = y is taken with a range x =�50 to x = +50.
This string of points has a perfect correlation. Gaussian-
distributed random numbers (with Gaussian halfwidths of
25) are then added to both the x and y values to reduce the
perfect correlation. Then for various ranges of x values the
linear correlation coefficient rcorr between x and y is calcu-
lated and plotted. Also, plotted is the variance s2(x) of the x
values in the restricted range of x values. As can be seen in
the graph of Figure 6, when all of the x values are used (right-
hand edge of the graph) the correlation between x and y is
rcorr = 0.537 (= 53.7%) and as the range of x values used is
reduced (moving toward the left in the graph) the correlation
coefficient rcorr is reduced. Simultaneously, the variance of
the x values s2(x) is reduced. If the ratio rcorr/s(x) is taken
(open circles), it is seen that this ratio does not vary

Table 6. Removing the B Effect to See if There Remains a

Turbulence-Level Effecta

All Values of B 8 nT < B < 10 nT

B dByz dByz/B B dByz dByz/B

AE +17.2 +33.6 +23.9 +5.2 +39.6 +39.0
AL �13.9 �27.9 �19.8 �2.9 �34.2 �34.1
AU +19.3 +36.2 +25.8 +7.8 +42.9 +41.8
Kp +22.8 +45.8 +34.4 +7.1 +50.8 +50.5
Dst �11.1 �11.4 �5.7 �3.2 �9.1 �3.6
ap +23.5 +41.8 +28.0 +7.4 +40.6 +39.8
PCI +22.0 +31.5 +18.8 �2.1 +39.0 +39.5

aLinear cross-correlation coefficients are in percent. Northward inter-
planetary magnetic field (IMF), where the turbulence effect is clearest.

Figure 5. For northward interplanetary magnetic field
(IMF), the correlation coefficient rcorr between dByz and AE
is plotted as a function of the maximum value of sBz/hBzi
allowed, where hBzi is the hourly average of Bz in the solar
wind and sBz is standard deviation of Bz measurements in
that hour. Also, plotted is the variance s2(dByz) of dByz

values and rcorr/s(dByz) as functions of the maximum
allowed value of sBz/hBzi.
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significantly as the range of x values is reduced. Hence for
noisy data, as the range of x values is reduced the correlation
coefficient is expected to be reduced but the ratio of rcorr/s(x)
should not be reduced. Now looking again at the dByz-AE
correlation results in Figure 5, the ratio rcorr/s(dByz) is plotted
as the open circles. As can be seen, this ratio remains
approximately constant as the range of sBz/hBzi is reduced
and the correlation coefficient between dByz and AE is
reduced. This is the amount of reduction of rcorr that should
be expected if the correlation between dByz and AE remains.
Hence it is concluded that the reduction in the correlation
between dByz and AE is caused purely by the reduction in the
variance of dByz values used to calculate the correlation: it is
not caused by the removal of a Bz-reversal effect. This means
that a Bz-reversal effect is not the cause of the enhanced
coupling between the solar wind and the magnetosphere
associated with an enhanced amplitude of solar wind turbu-
lence when the IMF is northward.
[24] In the IMF-northward and IMF-southward regimes,

multivariate linear-regression fits of the AE index as a
function of vBz and dByz are performed. The best fit for
northward IMF (1000 nT km/s < vBz < 3000 nT km/s) is

AE ¼ �0:0123vBz þ 25:5dByz þ 66:3; ð5Þ

with a linear correlation coefficient rcorr of 34.2%. In
expression (5) AE, dByz, and vBz are in nT km/s. The linear-

correlation coefficient for the bivariate fit AE-vBz is 3.3%
and for the bivariate fit AE-dByz it is 33.6%. For northward
IMF, adding vBz information improves the AE-dByz fit. For
southward IMF (1000 nT km/s < �vBz < 3000 nT km/s) the
best fit is

AE ¼ �0:169vBz þ 18:2dByz þ 81:5; ð6Þ

with a linear-correlation coefficient rcorr of 46.3%. Again,
AE is in nT, dByz is in nT, and vBz is in nT km/s. The linear-
correlation coefficient for the bivariate fit AE-vBz is 44.5%
and for the bivariate fit AE-dByz it is 15.2%. For southward
IMF, adding dByz information improves the AE-vBz fit. For
southward IMF, vBz dominates over dByz for driving the AE
index, whereas for northward IMF dByz dominates over vBz

for driving the AE index. Note that the linear coefficients
between AE and dByz are similar (25.5 and 18.2) in
expressions (5) and (6), indicating that the turbulence-
amplitude effect which is clearly discernible for northward
IMF is similar under northward and southward IMF: it is
roughly @(AE)/@(dByz) � 22, where both the AE index and
dByz are measured in nT. This type of slope can be seen in
Figure 4.
[25] The fact that the turbulence effect on AE has the

same magnitude for northward IMF as it does for southward
IMF is graphically demonstrated in Figures 7 and 8. Here
linear-regression fits to AE as a function of vBz are plotted
for four groups of data: the combination of northward IMF
(0 < vBz < 3000 nT km/s) or southward IMF (0 < �vBz <
3000 nT km/s) and low-level turbulence (dByz/B < 0.1) or
high-level turbulence (dByz/B > 0.5). These linear-regression

Figure 6. A gendanken experiment is performed in which
Gaussian noise is added to a set of perfectly correlated x and
y values to lower the correlation coefficient (to 53.7%)
owing to noise. Then the range of x values is restricted to
examine how the correlation coefficient between x and y is
reduced in comparison to the reduction in the variance of x
values.

Figure 7. Four linear-regression fits (solid curves) to the
AE versus vBz data. The fits are for 0 < vBz < 3000
(northward interplanetary magnetic field (IMF)) and 0 <
�vBz < 3000 (southward IMF) for dByz/B < 10% (low-level
turbulence) and dByz/B > 50% (high-level turbulence). The
weak-turbulence curves are subtracted from the high-
turbulence curves to see how the level of turbulence affects
AE (dashed curves).
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fits are the four solid curves in Figure 7. Then the two low-
turbulence curves are subtracted from the two high-turbu-
lence curves to produce the two dashed curves, which
represent the change in AE owed to an increase in the level
of turbulence. As can be seen, this turbulence-effect increase
in AE is similar for northward IMF and southward IMF.
Repeating this procedure for the other geomagnetic indices,
the resulting six pairs of difference curves are plotted in
Figure 8. As can be seen, for AE, AU, AL, Kp, ap, and PCI,
the turbulence effect on each index is similar for northward
and southward IMF. Figure 8 also indicates that about 70 nT
of the AE index is associated with switching from low dByz/B
to high dByz/B, as is �30 nT of AU, �30 nT of AL, �1 unit
of Kp, �0.3 units of PCI, and �10 units of ap.
[26] The linear-correlation coefficients between the am-

plitude of the solar wind turbulence and the various geo-
magnetic indices are plotted as functions of the time lag
between the solar wind measurements (velocity shifted to
Earth) and the measurements of the indices in Figures 9 and
10. A positive time lag means the magnetospheric index
responds ‘‘after’’ a change in the solar wind. Figure 9 uses
dByz as a measure of the turbulence amplitude and Figure 10
uses dByz/B as a measure. As can be seen, for the various
indices (excepting Dst) a time lag of about 1 hour optimizes

the correlation. This may indicate a reaction time of about 1
hour for those geomagnetic indices to fully respond to a
change in the level of turbulence bathing the magneto-
sphere. The cross-correlation times between the level of
turbulence and the various geomagnetic indices, which are
the characteristic falloff times of the curves in the figure, are
about 5–9 hours. As indicated in Appendix A, the auto-
correlation times for dByz and dByz/B in the solar wind are
about 9 and 7 hours, respectively. Hence the cross-correla-
tion times in Figures 9 and 10 probably reflect the autocor-
relation times of the solar wind drivers.
[27] To summarize the findings of this examination of the

correlations between the amplitude of turbulence in the
upstream solar wind and the various geomagnetic indices
(the turbulence effect), it was found that (1) the turbulence
effect operates for both northward and southward IMF (see
Tables 3 and 4), (2) the strength of the turbulence effect is the
same for northward and for southward IMF (see expressions
(1) and (2) and Figures 7 and 8), (3) for northward IMF the
turbulence effect is not caused by reversals of Bz associated
with the turbulent fluctuations (see Figures 5 and 6), (4) the
amplitude of the turbulence is not acting as a proxy for jBj in
the correlations (Table 6), and (5) the optimal time lag
between the solar wind and the magnetospheric indices for
the turbulence effect is about 1 hour.
[28] The interpretation of these results is that there is an

eddy-viscous interaction between the solar wind and the
magnetosphere that is controlled by the level of turbulence
in the upstream solar wind. Louder upstream turbulence
leads to a larger eddy viscosity (= a larger Reynolds stress),
which leads to more momentum transport from the solar
wind flow into the magnetosphere, which leads to greater
convection in the magnetosphere, which drives stronger
current systems between the magnetosphere and the iono-
sphere, and which leads to elevated geomagnetic indices.

5. Comparison of Eddy Viscosity and
Reconnection

[29] The turbulence effect can be compared to the vBz

reconnection driver of the magnetosphere by honing in on
the physics of eddy viscosity and the viscous driving of the
magnetosphere. First, viscous driving is examined.
[30] The drag force Fdrag on an obstacle in a fluid flow

can be written [e.g., Faber, 1995]

Fdrag ¼ 1=2ð Þru21 pd2=4
� �

CD ð7Þ

where CD is the drag coefficient, r is the mass density of the
fluid, u1 is the upstream flow velocity, and d is the cross-
stream ‘‘diameter’’ of the obstacle. (In this chapter and in
Appendix C, u is chosen for velocity rather the v to avoid
confusion with viscosity n.) The total drag force Fdrag

(known also as the profile drag) is the sum of two
components Fdrag = Fvisc + Fpress, a viscous drag (known
also as the skin friction) Fvisc and a pressure drag (known
also as the form drag) Fpress (see, e.g., equations (9.2)–(9.4)
of Nakamura and Boucher [1999]). Likewise, the dimen-
sionless drag coefficient CD = Cvisc + Cpress is the sum of
two dimensionless coefficients, a viscous-drag coefficient
Cvisc (often called Cf in the literature) and a pressure-drag
coefficient Cpress (often called Cform in the literature). With

Figure 8. As in Figure 7, difference curves are produced
for AE, AU, AL, Kp, ap, and PCI by subtracting high-
turbulence-level linear-regression fits from low-turbulence-
level linear-regression fits.
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these definitions used in expression (7), the viscous drag
force on an obstacle in a flow is

Fvisc ¼ 1=2ð Þru21 pd2=4
� �

Cvisc ð8Þ

The coefficient of viscous drag Cvisc depends on the shape
of the obstacle and the Reynolds number of the flow past
the obstacle (i.e., the geometry and the Reynolds number).
For a blunt-body obstacle such as the magnetosphere, the
appropriate Reynolds number is

Re ¼ u1d=nkin ¼ u12r=nkin; ð9Þ

where d is the diameter of the obstacle in the direction
normal to the flow and nkin is the kinematic viscosity of the
fluid. Ordinarily, the molecular kinematic viscosity or the
Braginskii viscosity is used for nkin, but later in this section
an eddy viscosity will be used for n. Using an eddy viscosity
puts the Reynolds number of the magnetosheath flow past
the magnetosphere in the Re = 10–106 range. For a rough
estimate of the coefficient of viscous drag Cvisc for the
magnetosphere, Cvisc for a spherical obstacle could be
taken. For 10 � Re � 106, a theoretical value for a sphere is

Cvisc � 5Re�1/2 (e.g., equation (7.25) of Faber [1995]) and
numerical solutions of the Navier-Stokes boundary layer
equations for a sphere yield Cvisc = 6.3Re�1/2 for 102 � Re
� 104 (e.g., Table 1 of El-Shaarawi et al. [1997]). Full
simulations of the Navier-Stokes equation at Reynolds
numbers Re � 103 support these values [Dennis and Walker,
1971; Feng and Michaelides, 2001]. Taking the magneto-
sphere to be shaped as a hemisphere attached to the end of a
cylinder, a better estimate of Cvisc for the magnetosphere is
derived in Appendix C. It is

Cvisc ¼ 13:3Re�1=2: ð10Þ

As noted in Appendix C, if internal convection of the
magnetosphere occurs as a result of the viscous interaction,
then the factor 13.3 in expression (10) would be somewhat
lessened. Inserting the coefficient of viscous drag expression
(10) into expression (8) and using expression (9) for Re yields

Fvisc ¼ 5:22ru3=21 d3=2n1=2kin : ð11Þ

Now for the eddy viscosity.

Figure 9. The linear-correlation coefficient between dByz in the solar wind and the various geomagnetic
activity indices is plotted as a function of the time lag from the solar wind to the magnetospheric index.
Note that the solar wind measurements are time shifted to Earth at the solar wind convection velocity.
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[31] Following the prescription of Wu and Faeth [1994b]
and Volino [1998] for the analysis of experiments with eddy
viscosity controlled by the level of upstream turbulence, the
kinematic viscosity nkin in the Reynolds number is replaced
by an effective viscosity neff = nkin + neddy � neddy. The eddy
viscosity is taken to be neddy = Cn(du)2tcorr (expression (3)),
where du is the amplitude of velocity fluctuations in the
turbulent flow and tcorr is the correlation time of the velocity
fluctuations in the turbulence. The reader is cautioned that
this eddy-viscosity expression is a rough approximation that
comes from a fluid-turbulence mixing-length theory. Only
the amplitude du2 of the velocity fluctuations are taken into
account whereas for MHD turbulence the eddy-viscosity
expression should also contain a term that is proportional to
the amplitude of the magnetic field fluctuations dB2 of the
turbulence (e.g., equation (2.21a) of Chen and Montgomery
[1987] or equation (26) of Fontan [1999]). Since the
magnetic field fluctuation energy and the velocity-fluctua-
tion kinetic energy are approximately equal, this correction
is anticipated to be on the order 1. Taking du � u1(dB/B) in
neddy = Cn(du)

2tcorr, where dB/B is a measure of the ampli-

tude of the turbulence, and taking the coefficient Cn in
expression (3) to be Cn � 0.06 [Hamba, 1992; Yoshizawa
and Yokoi, 1996; sections 7.1.3 and 10.4.1 of Pope, 2000],
expression (9) becomes the effective Reynolds number

Reeff ¼ u1d=neddy ¼ 16:6du�1
1 dB=Bð Þ�2t�1

corr: ð12Þ

Using this expression for neddy in expression (11) yields

Fvisc � 1:28ru5=21 dB=Bð Þt1=2corrd
3=2: ð13Þ

If the correlation time tcorr of the turbulence does not vary
appreciably with the amplitude of the turbulence, and if the
diameter d of the magnetosphere does not vary appreciably,
then (writing r = mpn, where mp is the proton mass, and
replacing the symbol u1 with v)

Fvisc / nv5=2 dByz=B
� �

; ð14Þ

where n is the number density of the solar wind, v is the
velocity of the solar wind and dByz/B is a measure of the
turbulence amplitude of the upstream solar wind.

Figure 10. The linear-correlation coefficient between dByz/B in the solar wind and the various
geomagnetic activity indices is plotted as a function of the time lag from the solar wind to the
magnetospheric index. Note that the solar wind measurements are time shifted to Earth at the solar wind
convection velocity.
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[32] The total viscous force of the solar wind on the
magnetosphere should scale with the solar wind parameters
of expression (14). This eddy-viscous driver is compared
with the reconnection driver vBz in the two panels of Figure
11. Here the linear correlation coefficient between each
driver and AE is plotted as a function of the solar wind-to-
magnetosphere time lag. For southward IMF (first panel),
the reconnection driver vBz (dashed curve) has a higher
correlation coefficient with AE than does the eddy-viscosity
driver; hence for southward IMF more of the variability of
AE is controlled by vBz. For northward IMF (second panel)
the eddy-viscous driver (solid curve) has a higher correla-
tion with AE than does vBz; hence for northward IMF the
eddy-viscous driver controls more of the variability of AE
than does reconnection. Note in comparing the two panels
of Figure 11 that the maximum correlation coefficients are
similar (45.5% for eddy viscosity under northward IMF and
47.8% for vBz under southward IMF), i.e., the eddy-viscos-
ity driver drives about the same fraction of the variation of
AE under northward IMF as vBz drives under southward
IMF [e.g., section 11.5 of Freund, 1981].
[33] For the other geomagnetic activity indices, the linear-

correlation coefficients with Fvisc for northward IMF are
listed in Table 7. The correlations are performed both with
and without a 1-hour time lag between the solar wind

parameters and the geomagnetic indices. As can be seen
in the table, in most cases the 1-hour time lag improves the
correlation coefficients. The exceptions are the Dst index,
which has a poor correlation in general, and the polar cap
index PCI. Perhaps PCI responds more instantaneously to
the viscous driver than do magnetospheric indices such as
AE, AL, and AU.
[34] Multivariate linear-regression fits to the AE index

AE = AE(vBz, Fvisc) yield correlation coefficients higher
than those of the AE = AE(vB,dByz) linear-regression fits
(expressions (5) and (6)). This is particularly true if time
lags between the solar wind and the magnetospheric indices
are used. For a 1-hour time lag between AE and all solar
wind parameters (which is optimal, as indicated by the plots
in Figure 11), multivariate linear regression fits of the AE
index as functions of vBz and nv5/2(dByz/B) (which is
proportional to Fvisc) are performed. The best fit for
northward IMF (1000 nT km/s < vBz < 3000 nT km/s) is

AE ¼ �0:0101vBz þ 2:96� 10�8nv5=2 dByz=B
� �

þ 77:1; ð15Þ

with a linear correlation coefficient rcorr of 46.5%. In
expression (15) AE is in nT, vBz is in nT km/s, n is in
cm�3, v is in km/s, and dByz/B is dimensionless. The linear-
correlation coefficient for the bivariate fit AE-vBz is 4.7%

Figure 11. The cross correlation between the AE index and two quantities in the solar wind: vBz and
nv5/2(dB/B). The correlation between AE and vBz is an indicator of reconnection driving of the
magnetosphere and the correlation between AE and nv5/2(dB/B) is an indicator of the eddy viscous
driving of the magnetosphere. For northward interplanetary magnetic field (IMF) the eddy-viscous
driving dominates the variation of AE (second panel) and for southward IMF reconnection dominates the
variation of AE (first panel).
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and for the bivariate fit AE-nv5/2(dByz/B) it is 45.5%. For
southward IMF (1000 nT km/s < �vBz < 3000 nT km/s) the
best fit is

AE ¼ �0:179vBz þ 1:89� 10�8nv5=2 dByz=B
� �

þ 117:9; ð16Þ

with a linear-correlation coefficient rcorr of 54.0%. Again,
AE is in nT, vBz is in nT km/s, n is in cm�3, v is in km/s, and
dByz/B is dimensionless. The linear-correlation coefficient
for the bivariate fit AE-vBz is 52.2% and for the bivariate fit
AE-nv5/2(dByz/B) it is 15.5%. Note in expressions (15) and
(16) that the coefficients between AE and nv5/2(dByz/B are
similar (2.96 � 10�8 and 1.89 � 10�8), indicating that the
viscous driver operates with similar strength under north-
ward and southward IMF.

6. Summary, Discussion, and Future Work

[35] The amplitude of the turbulence in the solar wind
upstream of the Earth has a definite effect on the Earth’s
geomagnetic indices. Geomagnetic activity increases with
an increase in the amplitude of the turbulence. This turbu-
lence effect is present for both northward and southward
IMF, but is more easily discerned for northward IMF.
[36] The interpretation of the results of sections 4 and 5 is

that there is an eddy-viscous interaction between the solar
wind and the magnetosphere that is controlled by the level
of turbulence in the upstream solar wind. Louder upstream
turbulence leads to a larger eddy viscosity (which is a larger
Reynolds stress), which leads to more momentum transport
from the solar wind flow into the magnetosphere, which
leads to greater convection in the magnetosphere, which
drives stronger current systems between the magnetosphere
and the ionosphere, and which leads to elevated geomag-
netic indices.
[37] Deriving an expression for the eddy-viscous stress

force on the magnetosphere leads to a combination of solar
wind parameters (n1v5/2(dB/B)1) that produces a correlation
coefficient with AE that is larger than that obtained with the
turbulence amplitude alone.
[38] For the data sets used, linear-correlation coefficients

in the range 0.2–0.5 (cf. Tables 3, 6, and 7 and Figures 5, 9,
10, and 11) are found. Substantially improved correlation
coefficients can be obtained from this same data set if solar
wind values plus their time lags are used in the correlations.

For instance, defining the shorthand notation fvisc = n1v5/2

(dByz/B)
1, the four-parameter linear-regression fit of

AE(t) as a function of the simultaneous solar wind
quantities vBz(t) and fvisc(t) and the 1-hour time-lagged values
vBz (t � �t) and fvisc(t � �t) finds, for southward IMF,

AE tð Þ ¼ � 0:0922vBz tð Þ þ 2:42� 10�8fvisc tð Þ
� 0:0929vBz t ��tð Þ þ 9:36� 10�9fvisc t ��tð Þ þ 115:9;

ð17Þ

with a linear-correlation coefficient rcorr = 0.69, and, for
northward IMF,

AE tð Þ ¼ 0:0214vBz tð Þ þ 2:43� 10�8fvisc tð Þ
� 0:0484vBz t ��tð Þ þ 1:19� 10�8fvisc t ��tð Þ þ 115:9;

ð18Þ

with a linear-correlation coefficient rcorr = 0.68. These are
significantly improved correlation coefficients over those
corresponding to expressions (15) and (16). Note again that
the coefficients of fvisc are nearly the same for southward IMF
(expression (17)) and for northward IMF (expression (18)).
[39] The viscous interaction between the solar wind and

the magnetosphere is often thought to be owed to instabilities
on the boundary of the magnetosphere [Eviatar and Wolf,
1968; Haerendel, 1978], particularly Kelvin-Helmholtz type
instabilities driven by the solar wind flow [Mishin, 1981;
Nykyri and Otto, 2001]. In fluid interactions such as wind
driving at the air-sea interface, the presence of turbulence in
the wind leads to an enhanced surface drag and momentum
coupling between the fluids [Belcher et al., 1993; Makin et
al., 1995] and to enhanced driving of boundary layer waves
[Jeffreys, 1925; Miles, 1993] including those of the Kelvin-
Helmholtz type [Cohen and Belcher, 1999]. The addition of
freestream turbulence in fluid flows can destabilize boundary
layers [Duck et al., 1996; Wu, 1999], changing the nature of
fluid coupling to obstacles. For high Reynolds number MHD
fluid flows, it would be remarkable if the presence of
turbulence did not have these, plus other, effects.
[40] A rough estimate of the eddy viscosity of the

magnetosheath flow can be made and compared with values
in the literature of the viscosity believed to be necessary for
the viscous interaction to operate. Including both the veloc-
ity fluctuation and the magnetic field fluctuation pieces, the
MHD eddy viscosity is neddy = CnK

2/e (e.g., equation (24)
of Yoshizawa and Yokoi [1996]) where K = 0.5(du2 + dB2/
4pnmi) (e.g., equation (20) of Yoshizawa and Yokoi [1996])
is the turbulent energy per unit mass and where e = @K/@t
(e.g., equation (26) of Yoshizawa [1990]) is the dissipation
rate of turbulent energy. Taking e = K/tauto (e.g., equation
(1.5.13) of Tennekes and Lumley [1972]), where tauto is the
autocorrelation time of the turbulence (= the eddy turnover
time), the MHD eddy viscosity is

neddy ¼ Cn0:5 du2 þ dB2=4pnmi

� �
=tauto: ð19Þ

Taking Cn = 0.06 (from section 5), dv = 40 km/s (from
Table 2) ,  d B = 12 nT  (from Table 3 of Borovsky and
Funsten, 2003), n = 25/cm (from Table 3 of Borovsky
 and Funsten  [2003]), and t auto = 30 s (from an exam-
ination of ISE E-2 Fast Plasma Experiment data),

Table 7. Linear Cross-Correlation Coefficients rcorr (In Percent)

Between vBz and Fvisc and Fvisc With a 1-Hour Time Lag

(Columns) and the Various Geomagnetic Activity Indices (Rows)

for Northward Interplanetary Magnetic Field (IMF) (1000 nT km/s

< vBz < 3000 nT km/s)a

vBz nv5/2(dByz/B) nv5/2(dByz/B)

No Lag No Lag 1-Hour Lag

AE �3.5 +39.4 +45.5
AL +3.1 �32.9 �37.1
AU �3.2 +42.3 +46.5
Kp +10.6 +50.5 +50.2
Dst �8.2 �10.7 �10.6
ap +10.4 +54.5 +53.2
PCI �8.5 +36.3 +30.0

aOne thousand six hundred sixty-four points go into each correlation, and
the 95% confidence level of correlation is ±5.0%.
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expression (3) yields neddy = 3.9 � 1013 cm2/s for the eddy
viscosity of the magnetosheath. Note that this value will vary
from day to day as the level of turbulence in the
magnetosheath changes. Arguments in the literature for
what size of viscosity is needed to produce boundary layers
on the magnetosphere of a given thickness yield viscosity
estimates of 1013 cm2/s [Axford, 1964], 1014 cm2/s [Mishin,
1979], and 1013 cm2/s [Sonnerup, 1980]. As can be seen, the
value of the eddy viscosity of the turbulent magnetosheath is
in the range of the estimates of the viscosity needed to
produce the viscous interaction. The eddy viscosity of the
magnetosheath can be compared with estimates of diffusion
coefficients obtained from observations of particle diffusion
at the magnetopause [Reiff et al., 1977; Sckopke et al., 1981]
by first relating the eddy viscosity neddy to an eddy diffusion
coefficient Deddy and then writing the diffusion coefficient in
the form of a Bohm diffusion coefficient. The turbulent
Schmidt number Sct = neddy/Deddy is the ratio of the eddy
viscosity neddy to the eddy diffusion coefficient Deddy. The
turbulent Schmidt number typically is Sct � 0.6 [Antoine et
al., 2001; Flesch et al., 2002], but may deviate from this
value near a boundary (e.g., Figure 3 of Koeltzsch [2000],
and see also Figure 11 of Smolentsev et al. [2002]). For Sct =
0.6, Deddy = 1.66neddy. For neddy = 3.9 � 1013 cm2/s, this
gives Deddy = 6.6 � 1013 cm2/s. This value of Deddy is in the
range of the estimate D = 1013 cm2/s given by Sckopke et al.
[1981] to produce the observed thickness of the boundary
layer. The Bohm diffusion coefficient DB = ackBT/eB, where
a = 1/16 for classical Bohm diffusion [see section 1.14 of
Krall and Trivelpiece, 1973]. Writing the eddy diffusion
coefficient Deddy in the form of the Bohm diffusion
coefficient as did Reiff et al. yields Deddy = ackBT/eB.
Using the above value ofDeddy� 6.6� 1013 cm2/s and using
Ti � 400 eV, and B � 25 nT for the magnetosheath (Table 3
of Borovsky and Funsten [2003]), this expression yields a �
0.41. Note again that this value will vary from day to day as
the level of turbulence in the magnetosheath varies. This
value is similar to the value a = 1.2 that Reiff et al. obtained
by fitting the dispersion profiles of particles diffusing at the
magnetopause. So again, the value of the eddy viscosity of
the magnetosheath is in the range required to produce the
viscous interaction.
[41] The results of this work compare favorably with an

assessment of the efficiency of the viscous interaction for
powering the magnetosphere [Tsurutani and Gonzalez,
1995]. That assessment was made by looking at the strength
of the AE index during a set of strongly northward-IMF
events. Extracting the events listed in Table 1 of Tsurutani
and Gonzalez from our large data set (but removing 2 hours
of that data that had southward Bz GSM) and performing the
dByz versus AE correlation for those event times, a 46.6%
correlation coefficient is found, where the 95% confidence
level is at 32.9%. The slopes and intercepts of the linear
regression for the Tsurutani and Gonzalez events are very
similar to the slopes and intercepts for the full 3 years of
data, meaning that these events fit in with the general trend
of turbulence in the solar wind producing elevated geomag-
netic activity, i.e., the events are not special. For the purpose
of discussion, Tsurutani and Gonzalez make the assumption
that the viscous coupling is about 10% as efficient as is
reconnection; from Table 5 of the present paper one would
argue that it is about 20% as efficient for powering the

currents that are measured by the AE index. Among their
various events, Tsurutani and Gonzalez find a variability in
the viscous-interaction efficiency which they cannot ac-
count for; this paper has uncovered a reason for such
variability: control of the viscous interaction by the ampli-
tude of solar wind turbulence.
[42] Note that the correlation between the amplitude of

the solar wind turbulence and the level of geomagnetic
activity discussed in this report differs from the effects
emphasized for HILDCAA events [Tsurutani and Gonzalez,
1987; Tsurutani et al., 1995], where large amplitude, very
low frequency Alfven waves in the solar wind cause the
IMF to swing southward and become geomagnetically
effective. In section 4, such a Bz-reversal effect was inves-
tigated as an explanation of the turbulence effect under
northward IMF and the turbulence effect was found to
persist when Bz reversals were eliminated. The periods most
relevant to HILDCAA events are hours; the periods of most
relevance for the eddy viscosity effect are in the range of
less than a minute to a few minutes.
[43] Computer simulations verify what has been known

for over a century, namely that turbulence has affects on
nearly every aspect of fluid dynamics [e.g., sections 365–
369 of Lamb, 1932]. But a computer simulation of a flow
does not allow turbulence and does not capture the effects of
turbulence correctly unless numerical dissipation in the
simulation is low and unless spatial resolution in the
simulation is high (i.e., the simulation code must have a
sufficiently high Reynolds number). In MHD simulation of
the solar-wind-driven magnetosphere, the computer codes
that are used have advanced to the point of just seeing the
larger-scale fluctuations of MHD turbulence in the magne-
tosphere [e.g., White et al., 2001; Sonnerup et al., 2001],
but they have not yet advanced sufficiently to see turbulence
in the solar wind or magnetosheath. To get turbulence and
its effects correct in numerical simulations, the simulation
codes must either (1) fully resolve the flow from large scales
down to the dissipation scale of the turbulence with a so-
called direct numerical simulation (DNS) or (2) turbulence
must be accounted for by inclusion of a turbulence model
into the codes where the turbulence model predicts how and
where turbulence evolves in the flow and calculates the
feedback of the turbulence on the flow. For space plasmas,
resolving MHD turbulence down to the dissipation scale
requires grid resolution below the ion gyroradius or below
the ion inertial length. For global magnetospheric simula-
tions this resolution requirement makes DNS impractical at
present. There are two easier options for computation beside
DNS [cf. Spalart, 2000; part two of Pope, 2000; section 5.1
and chap. 8 of Mathieu and Scott, 2000]. The first is large
eddy simulation (LES), wherein the larger-scale fluctuations
of the turbulence are resolved by the computational grid of a
medium Reynolds number simulation code and the effects
of the smaller-scale portions of the turbulence are emulated
with transport coefficients calculated from a turbulence
model [Theobalk et al., 1994; Agullo et al., 2001]. The
second option is Reynolds averaged Navier Stokes (RANS)
or Reynolds averaged MHD, wherein only the nonfluctuat-
ing mean flow is resolved by a low Reynolds number
simulation code and the effects of turbulence are put in
with transport coefficients calculated from a turbulence
model [Kenjeres and Hanjalic, 2000; Hanjalic and Ken-
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jeres, 2001]. When a turbulence model is used in a
simulation to represent the affects of turbulence with
transport coefficients, the most important coefficient is
eddy viscosity, which is an approximation to the Reynolds
stress [e.g., Okamoto, 1994; Gatski and Jongen, 2000].
This viscosity represents the greatly enhanced momentum
transport owed to turbulent fluctuations. Whereas a large
kinematic (molecular) viscosity will act to suppress turbu-
lence, the eddy viscosity represents the action of turbu-
lence. Introduction of a large eddy viscosity will lower the
effective Reynolds number of a simulation, but not in the
sense that the lower Reynolds number situation will be
absent of turbulence. Rather on the contrary, eddy viscos-
ity signifies rather than suppresses turbulence. In low
Reynolds number MHD codes used for global magneto-
spheric simulations, numerical diffusivity and numerical
resistivity which are inherent in the codes can emulate
eddy viscosity and eddy resistivity [cf. Porter and Wood-
ward, 1994; Cottet, 1996], but without control of the
magnitude of the eddy viscosity and without the proper
parametric dependences (i.e., on the time history of the
fluid shear). Because direct numerical simulations of
everyday large Reynolds number flow problems (e.g.,
aircraft, automobiles, submarines, and buildings) are so
impractical, there is a vast research effort in fluid dynam-
ics aimed at improving turbulence models for incorpora-
tion into LES and RANS simulation codes [Rodi, 1997;
Henkes, 1998; Speziale, 1998; Murakami, 1998]. For
space physics, it should be pondered whether such an
effort is needed to improve MHD simulations of the solar
wind driven magnetosphere. On one hand, the phenome-
nological consequences of turbulence for solar system
flows have not been well established and there are no
wind-tunnel experiments where dials can be turned to aid
in the construction of MHD turbulence models. On the
other hand, there is the hard-earned lesson of fluid
dynamics: If getting the right answer matters, turbulence,
if present, must be accounted for.
[44] Accounting for eddy-viscosity effects in the coupling

of the solar wind to the Earth’s magnetosphere can lead to a
fuller understanding of how the magnetosphere is driven
and can lead to more accuracy in the prediction of geomag-
netic activity and so-called space weather. Measuring the
influence that solar wind turbulence has on the magneto-
sphere is one of the few ways that plasma researchers can
use to study the dynamical effects of turbulence in MHD
flows and the coupling of large-scale plasmas at high
Reynolds numbers. The turbulent solar wind interacting
with the Earth’s magnetosphere provides a test case to
discern which turbulent-viscosity effects play roles for
astrophysical plasma flows [e.g., Armitage, 1998; Balbus
and Hawley, 1998].
[45] To enhance our understanding of this turbulence

effect, more work needs to be done. (1) A two-satellite
study is needed to obtain a parameterization of the levels of
MHD turbulence in the magnetosheath in terms of the level
of MHD turbulence in the upstream solar wind. With such a
parameterization, a more accurate eddy diffusion coefficient
at the Earth can be derived in terms of the upstream solar
wind parameters. (2) High time resolution solar wind data
should be used to construct a measure of the solar wind
turbulence with a time resolution of about a few minutes,

and a scheme should be developed to remove rotational/
tangential discontinuities from the turbulence measures.
With these cleaner, higher time resolution measurements
of the solar wind turbulence, improved correlations for the
turbulence effect should be expected. (3) A statistical
analysis of satellite flow measurements should be used to
search for evidence of momentum loss in the magnetosheath
plasma flow adjacent to the magnetopause. If there is any
viscous interaction between the magnetosheath and the
magnetosphere, then, close to the magnetosphere, there
should be velocity gradients (rates of strain) that correspond
to the viscous shear stresses [see section 1.1 of Young,
1989]. Such evidence of magnetosheath momentum loss
would confirm and allow improvement of the fluid bound-
ary layer approximation used to calculate the total eddy-
viscous force of the solar wind flow on the magnetosphere.
(4) The nature of the turbulence in the magnetosheath near
the magnetopause needs to be characterized (correlations
among the fluctuation-velocity components, nature of mag-
netic field and velocity spectra, anisotropies, etc.) in order to
obtain improved values for the eddy viscosity and the
turbulent resistivity.

Appendix A: Autocorrelation Functions of Solar
Wind Quantities

[46] In this appendix, the autocorrelation functions and
autocorrelation times of pertinent solar wind quantities are
examined. For a time series f(t), the autocorrelation function
A(�t) of f is defined as

A �tð Þ ¼
Z

f tð Þ � fh i½ � f t þ�tð Þ � fh i½ �dt=A 0ð Þ; ðA1Þ

with

A 0ð Þ ¼
Z

f tð Þ � fh i½ � f tð Þ � fh i½ �dt; ðA2Þ

where �t is the time shift between the time series of data
and itself, and h f i is the average value of f.
[47] In Figure 12, the autocorrelation functions of vBz,

jBj, dByz, and dByz/B are plotted. The autocorrelation time
(using the 1/e method) for vBz is �5 hours and for jBj it is
�14 hours. The �5-hour autocorrelation time of vBz is
similar to the �6-hour cross-correlation time between vBz

and AE (see Figure 11) and may be the origin of that cross-
correlation time. In Figure 12, dByz and dByz/B have two-
component autocorrelation functions. The fast components
have autocorrelation times of �1 hour (for hourly averaged
data) and the slow components have autocorrelation times
of �9 hours for dByz and �7 hours for dByz/B. These slower
autocorrelation times are similar to the cross-correlation
times seen between dByz and the various geomagnetic
activity indices (cf. Figure 9) and between dByz/B and the
various indices (cf. Figure 10).
[48] In Figure 13, higher time resolution data is used to

construct the autocorrelation function of dByz in the solar
wind. The curve with solid points is the autocorrelation
function of dByz constructed with 3 years of 1-hour-resolu-
tion OMNI data. The curve without points is the auto-
correlation function of dBvec constructed with 27 days of
4-min-averaged values from the ACE data set. Here dBvec is
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the standard deviation of 0.33-s time resolution measure-
ments of the vector magnetic field

dBvec ¼ Bx � Bxh ið Þ2
D E

þ By � By

� �� �2D Eh
þ Bz � Bzh ið Þ2
D Ei1=2

ðA3Þ

(C. Smith, private communication, 2002). Note that in the
higher time resolution solar wind data, the fast component
of the autocorrelation function is even faster, �4 min for the
4-min ACE data.
[49] Rotational/tangential discontinuities are ubiquitous

in the solar wind [Neugebauer and Alexander, 1991;
Tsurutani and Ho, 1999]. Each discontinuity produces a
burst of dByz that is uncorrelated with surrounding temporal
values of dByz. This leads to a fast decay in the autocorre-
lation function. It seems likely that the fast components of
the autocorrelation functions of dByz and dByz/B are owed to
the presence of rotational/tangential discontinuities in the
solar wind, rather than a bursty nature of the level of
turbulence in the solar wind. If the contribution to dByz

owed to rotational/tangential discontinuities could be re-

moved, the cross correlations between dByz and the various
geomagnetic activity indices probably could be improved.

Appendix B: Significance of the Correlations

[50] In sections 4 and 5, correlations between the values
of various driver functions in the solar wind and the values
of various geomagnetic indices were explored, with the
degree of correlation indicated by a linear correlation
coefficient rcorr. The rule of thumb rcorr > 2/N1/2 was used
to determine whether a correlation between two quantities
was significant or not. As discussed below, this rule of
thumb strictly applies only to data that have Gaussian
(normal) distributions. As will be seen below, the distribu-
tions of the values of the various solar wind drivers and the
various geomagnetic indices are not Gaussians. Therefore
the validity of the correlations indicated by the correlation
coefficients rcorr are further explored.
[51] In Figures 14–16, the occurrence distributions of

various quantities used in this solar wind/magnetosphere
coupling study are shown. In Figure 14, the occurrence
distribution of hourly averaged values of the solar wind
quantities vBz (first panel) and jBj (second panel) for 1979–
1981 are shown. In Figure 15, the occurrence distribution of
hourly averaged values of the solar wind turbulence quan-
tities dByz (first panel), dByz/B (second panel), and nv5/2

(dByz/B) (third panel) for 1979–1981 are shown. As can be
seen in the various panels of these two figures, none of the
occurrence distributions of solar wind driver values are
Gaussian.
[52] In Figure 16, the occurrence distributions of the

hourly averaged values of the auroral-electrojet index AE
(first panel), the hourly averaged values of the auroral-
electrojet indices AL and AU (second panel), 3-hour-aver-
aged values of the Kp index (third panel), hourly averaged
values of the polar cap index PCI (fourth panel), and hourly
averaged values of the Dst index (fifth panel) are plotted, all
for 1979–1981. As can be seen in this figure, none of the
distributions of geomagnetic-index values are Gaussian.
[53] For N data points (x,y), the correlation coefficient

rcorr between x and y is calculated with

rcorr ¼ � XiYið Þ= �X 2
i

� �
�Y 2

i

� �
 �1=2 ðB1Þ

Figure 12. The autocorrelation functions for the various
solar wind quantities that drive the magnetosphere.
Exponential fits exp(�t/tcorr) yield autocorrelation times
tcorr of �14 hours for jBj and �5 hours for vBz. The
autocorrelation function for dByz has a component with a
rapid falloff followed by a component with an autocorrela-
tion time of �9 hours and dByz/B has a rapid falloff followed
by a component with an autocorrelation time of �7 hours.

Figure 13. The autocorrelation function of the turbulence
amplitude in the solar wind with 1-hour time resolution and
with 4-min time resolution.
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[e.g., section 11.2 of Bevington and Robinson, 1992] where
Xi = (xi � xave) and Yi = (yi � yave), with xave being the
average of the N values of x and yave being the average of
the N values of y, and where all sums � are performed from
i = 1 to i = N. For N data points (x,y) that have a bivariate
normal distribution g(x,y,r) = exp{�(x2 � 2rxy + y2)/(2[1 �
r2])} (e.g., equation (26.3.1) of Abramowitz and Stegun
[1964]), the statistical significance of a correlation coeffi-
cient can be judged with the rule of thumb that the two
variables x and y are definitely correlated if the correlation
coefficient rcorr > 2/N1/2. This rule of thumb comes from the
fact that, for bivariate normal data with no correlation (r =
0), the distribution of correlation coefficients rcorr is a
Gaussian with mean of 0 and a standard deviation s = (N �
1)�1/2, where N is the number of data points [see section
19.12 of Hald, 1952]. Since 5% of the area under a
Gaussian distribution lies beyond 1.64s, the 95% con-
fidence level for correlation occurs for rcorr > 1.64s, which
is rcorr > 1.64/(N � 1)1/2. For large N this is approximately
rcorr > 2/N1/2. If the distribution of data points (x,y) is a
bivariate normal distribution g(x,y,r), then the distribution of
x values is a Gaussian (normal distribution) and the
distribution of y values is a Gaussian. This can be seen by
integrating the bivariate normal distribution g(x,y,r) over
either x or y.
[54] Since none of the distributions of values used in this

study are Gaussian (see Figures 14–16), none of the sets of
data points (x,y) used in the correlations are bivariate normal
distributions. Hence the rule of thumb used to determine
whether or not a correlation is significant must be ques-
tioned. For the statistics of the solar wind drivers and
geomagnetic indices, which are not Gaussian, the signifi-

cance of the correlation coefficient is double checked with
the following statistical analysis. To determine what mag-
nitude of correlation coefficient rcorr is consistent with no
correlation, the data sets are repeatedly randomized and the
correlation coefficient is calculated each time. Then a
distribution function of correlation coefficients for the
random data is constructed and the correlation in question
is compared with this distribution. Here randomizing a data
set of N points (x,y) means randomizing the x values and
randomizing the y values and repairing the x values with y
values into N points (x,y). The solar wind driver value is x
and y is a geomagnetic-index value. The results of three of
these tests are shown in the three panels of Figure 17: dByz

versus AE (first panel), dByz/B versus AE (second panel),
and Fv versus AE (third panel). For all three of these cases
N = 1664. For each case the randomization process was
repeated 10,000 times to yield 10,000 rcorr values. In each of
the three panels, the value of the correlation coefficient

Figure 14. The occurrence distribution of hourly averaged
values of vBz (first panel) and jBj (second panel) in the solar
wind in 1979–1981.

Figure 15. The occurrence distribution of hourly averaged
values of dByz (first panel), dByz/B (second panel), and nv5/2

(dByz/B) (third panel) in the solar wind in 1979–1981.
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obtained for the nonrandomized data is indicated with a bar.
For all three cases the correlation value in question lies far
outside the distribution of noncorrelated data. For dByz

versus AE, the standard deviation of the random-data rcorr
values is 2.44% and rcorr is 33.6%; for dByz versus AE, the
standard deviation of the random data rcorr values is 2.41%
and rcorr is 23.9%: and for Fv versus AE, the standard
deviation of the random-data rcorr values is 2.50% and rcorr
is 39.4%. The distributions of rcorr values appear to be
Gaussian and the standard deviations are all approximately
(N � 1)�1/2, which is 2.45% for N = 1664 data points.
Hence the fact that the data are not a bivariate normal
population does not appear to invalidate the rule of thumb
that correlation is definite for rcorr > 2/N1/2. For dByz versus
AE the correlation is at the 13.8s level, for dByz/B versus
AE the correlation is at the 9.9s level, and for Fv versus AE
the correlation is at the 15.8s level. Correlation at the 2s
level (= 97.7% confidence level) is significant.
[55] Two conclusions are drawn. (1) The correlations

found in sections 4 and 5 between the level of turbulence
and the geomagnetic indices are definite and are inconsis-

tent with random correlation coefficients for the data. (2)
The rule of thumb that is used in the body of this report (that
correlation at the 95% confidence level occurs for rcorr >
2/N1/2) holds, with 2/N1/2 approximating the 2s level. With
1664 data points (appropriate for all three cases tested
explored here), 2/N1/2 = 4.9%.

Appendix C: Viscous Drag on the Magnetosphere

[56] In this Appendix, the coefficient of viscous drag Cvisc

(see expression (8)) for a magnetosphere-shaped obstacle in
a flow is derived as a function of the Reynolds number of
the flow past the obstacle. The magnetospheric obstacle is
taken to be a hemisphere of radius r followed by a cylinder
of radius r and length h (see Figure 18). To get the
coefficient of viscous drag Cvisc, the viscous drag force
Fvisc (which is the local viscous shear stress integrated over
the entire surface of the magnetosphere) will be calculated.
This will be done by computationally determining the
structure of a viscous boundary layer that forms on a
magnetosphere-shaped obstacle in a flow. For ordinary

Figure 16. The occurrence distributions of various geomagnetic indices during 1979–1981: hourly
averaged AE (first), hourly averaged AU and AL (second), 3-hour-averaged Kp (third), hourly averaged
PCI (fourth), and hourly averaged Dst (fourth).
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Navier-Stokes fluids, the viscous boundary layer has a
thickness that scales as Re�1/2, where Re is the ordinary
Reynolds number. For MHD flows, as long as magnetic
field lines do not cross the surface of the obstacle from the
obstacle into the flow (in which case a Hartmann layer
results [see section 5.10 of Shercliff, 1965 and see section
10.4 of Jackson, 1975]), MHD effects are minor and an
ordinary viscous boundary layer that scales as Re�1/2 results
[e.g., Sears, 1961; see sections 12.5.2 and 12.6 of Sutton,
1965; see section 12.6 of Hughes and Young, 1966], as is
the case for a Navier-Stokes fluid.
[57] If u1 is the flow upstream of the hemisphere, the

Reynolds number Re of the flow will be given by expres-
sion (9): Re = u1d/nkin = u12r/nkin, where d and r are the
diameter and radius of the hemisphere (magnetosphere) and
nkin is the kinematic viscosity of the fluid. (Note, in this
appendix u is chosen for velocity rather the v to avoid
confusion with viscosity n.) Ordinarily for boundary layer
theory, nkin is taken to be the molecular kinematic viscosity,
but in section 5 a turbulent viscosity will be taken for nkin. A
fluid flowing around an obstacle with a Reynolds number
Re greater than about 20 will form a boundary layer on the
obstacle [e.g., Mathieu and Scott, 2000]: outside the bound-
ary layer the flow pattern is insensitive to the value of nkin
and inside the boundary layer the value of nkin affects the
flow. Taking x to be the direction tangential to the object’s
surface with x increasing downstream from the nose (see

Figure 18) and y to be the direction normal to the surface,
the notation u0x is taken for the tangential flow velocity just
outside the boundary layer, which is independent of the
fluid viscosity and the boundary layer structure. This flow
velocity u0x as a function of x is (e.g., equation (11.38) and
section VII.e of Schlichting [1979])

u0x xð Þ¼ 3=2ð Þu1 sin x=rð Þ¼ 3=2ð Þu1 sin qð Þ; ðC1Þ

where u1 is the flow far from the hemisphere. Just outside of
the boundary layer along the cylinder the tangential flow is

u0x xð Þ ¼ 3=2ð Þu1; ðC2Þ

with a no-slip boundary condition, ux will be zero every-
where at the surface of the obstacle. The viscous shear force
t per unit area on the obstacle (which is a shear stress
generated at the expense of momentum lost by the fluid
within the boundary layer) is given by (e.g., equation (7.24)
of Pope [2000])

t ¼ nkinr@ux=@y ðC3Þ

evaluated in the boundary layer at the surface of the obstacle,
where nkin is the kinematic viscosity of the fluid, r is the
mass density of the fluid, ux is the flow velocity in the x
direction (parallel to the surface), and @/@y is the spatial
derivative normal to the surface. The quantity @ux/@y is a

Figure 17. By repeatedly randomizing the data in the data sets and calculating the correlation
coefficients, distributions of correlation coefficients for random (uncorrelated) data are constructed
(points). The correlation coefficients for the unrandomized data (bars) are compared with these
distributions. The first panel pertains to dByz versus AE, the second panel pertains to dByz/B versus AE,
and the third panel pertains to nv5/2(dByz/B) versus AE.
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velocity shear or rate of strain. The derivative @ux/@y needed
for expression (C3) is estimated by computationally solving
for the structure of the boundary layer along the obstacle.
Within the boundary layer, viscous diffusion acts on the
vorticity caused by the boundary condition of the obstacle,
broadening the region of shear. The boundary layer is
thinnest on the upstream end and grows in thickness toward
the downstream end, with the growth in thickness owed to
the progressive action of viscous diffusion as fluid flows
downstream within the boundary layer. Viscous diffusion of
velocity shear is described by

@ux=@t ¼ nkin@2ux=@y
2 ðC4Þ

(e.g., equations (4.3) and (4.7) ofMathieu and Scott [2000]).
The partial differential equation (C4) is computationally
solved for ux(y,t) on a one-dimensional grid in the y direction
with appropriate boundary conditions. As time evolves, the
grid is translated in the x direction along the obstacle with the
tangential flow velocity and the grid is compressed in y (see
Figure 18). These two processes are discussed in the
following two paragraphs.
[58] The convection of the grid in the x direction is

handled as follows. Across the boundary layer the fluid
velocity ux varies from ux = 0 at the surface of the obstacle to
ux = u0x out in the unperturbed fluid. At a ‘‘midpoint’’ in the
boundary layer, the fluid velocity is (1/2)u0x. The convection
velocity ugrid of the grid in the x direction is taken to be at
ugrid = (1/2)u0x, which is the convection velocity associated
with the midpoint of the diffusing gradient. As time t
evolves, the grid moves in x, where x and t are related by

t ¼
Zx

0

1=2ð Þu0x xð Þ½ ��1
dx: ðC5Þ

With expressions (C1) and (C2), expression (C5) is

t xð Þ ¼ 4=3u1ð Þ
Zx

0

sin x=rð Þ; 1½ ��1
dx; ðC6Þ

where the quantity in the square bracket in the integrand is
equal to sin(x/r) for x � (p/2)r (hemisphere) and is equal to
1 for x � (p/2)r (cylinder). Note that there is a stagnation
point in the flow at the nose of the magnetosphere at q = x/r
= 0 (see expression (C1)). In the convection-time integral
(C6) this stagnation leads to a logarithmic divergence at the
x = 0 limit. In reality, diffusive transport will dominate
convective transport in the vicinity of the stagnation point.
This can be used to introduce a physical cutoff to the
integral: within a region of radius a around the stagnation
point, the convective velocity (3/4)u1sin(q) will be replaced
with a diffusive velocity udiff. The values of a and udiff are
determined by defining a diffusive velocity from the
diffusion equation in cylindrical coordinates, where, near
x = 0, x represents a radial distance:

@f =@t ¼ nkin@2f =@x2 þ nkin 1=xð Þ@f =@x; ðC7Þ

which yields a viscous diffusion timescale tdiff = a2/2nkin
for information to spread to a radius a. Defining an
effective diffusion velocity udiff = a/tdiff in this region, and
using tdiff = a2/nkin gives

udiff ¼ 2nkin=a: ðC8Þ

Setting udiff = (1/2)u0(a) and using expressions (C6) and (C8)
yields the expression

2nkin=a ¼ 3=4ð Þu1 sin a=rð Þ: ðC9Þ

Using sin(a/r) � a/r, this expression is solved for a to yield

a ¼ r 8nkin=3u1rð Þ1=2 ðC10Þ

for the cutoff value of x in the integral of expression (C6).
Expression (C6) is rewritten as

t ¼
Za

0

udiff½ ��1
dxþ 4=3u1ð Þ

Za

x

sin x=rð Þ; 1½ ��1
dx: ðC11Þ

Figure 18. The shape taken for the magnetosphere for the purpose of calculating the total viscous force
on it. Shown also is the convecting compressible computational grid.
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The first integral is equal to a/udiff, which, using expression
(C8) for udiff and expression (C10) for a, is equal to 4r/3u1.
Using a table of integrals, the second integral is performed
and expression (C11) becomes

t ¼ 4r=3u1ð Þ loge tan x=2rð Þ þ A1½ �; ðC12Þ

for x � (p/2)r (hemisphere) or

t ¼ 4r=3u1ð Þ x=r þ A1 � p=2½ �; ðC13Þ

for x � (p/2)r (cylinder), where

A1 ¼ 1þ 1=2ð Þ loge 3Re=4ð Þ; ðC14Þ

where loge tan(e
�1/2)��(1/2)loge(e) was used for e� 1 and

where expression (9) for the definition of the Reynolds
number R was used. Expressions (C12) and (C13) can each
be algebraically inverted to give the position x of the grid as a
function of t:

x=r ¼ 2inv tan exp 3u1=4rð Þt � A1½ �f g; ðC15Þ

for x/r � p/2 (hemisphere) and

x=r ¼ 3u1=4rð Þt � A1 þ p=2; ðC16Þ

for x/r � p/2 (cylinder).
[59] The compression of the grid in y is handled as

follows. As the tangential velocity u0x = (3/2)u1 sin(x/r)
increases with x going from the nose of the hemisphere to
the terminator, the streamlines of flow compress in the y
direction (see, e.g., Figure 6.8.1 of Batchelor [1970]). This
compression of the streamlines in y steepens y gradients and
amplifies the shear @ux/@y, which counteracts the diffusive
spreading of ux in y. As the computational grid is translated
in x, it is contracted in y according to the contraction of the
unperturbed streamlines. If the grid is started at x-position x0
with an initial gridspacing �y0, then conservation of mass
with tangential flow ux through an annulus of radial thick-
ness �y is written

3=2ð Þu1 sin x=rð Þ2p�yr sin x=rð Þ ¼ 3=2ð Þu1
� sin x0=rð Þ2p�y0r sin x0=rð Þ;

ðC17Þ

which is solved to give

�y ¼ �y0 sin x0=rð Þ= sin x=rð Þ½ �2: ðC18Þ

For the cylinder, sin(x/r) is replaced by unity in expression
(C18). Note that �y is a function of x. Since x is a function
of t (cf. expression (C15)), �y is also a function of t. As the
grid contracts according to expression (C18), the ux values
on the grid points are carried with the grid points. Hence the
shear profile steepens with the contraction.
[60] The partial differential equation (C4) is computation-

ally solved on the convecting-contracting grid using a time-
centered implicit numerical scheme as outlined in Appendix
1 of Borovsky et al. [1981]. The grid extends from y = 0 to

y = ymax, with uniform (but time-dependent) gridspacing
�y. The boundary conditions are ux = 0 at y = 0 and ux = ux0
(as given by expressions (C1) and (C2)) at y = ymax. A
typical grid has 10,000 grid points and it takes about
150,000 timesteps to convect the grid from the nose of
the obstacle to the end of the cylinder.
[61] A convecting-contracting grid solution with Re = 1 �

104 is shown in Figure 19. The derivative @ux/@y at y = 0 is
calculated as a function of the grid-position x along the
magnetosphere and this derivative is used in expression (C3)
to obtain the viscous shear force per unit area on the
magnetosphere t, which is plotted as a function of the
distance x from the nose of the magnetosphere. As can be
seen in the figure, the shear stress t is low at the nose
(because the shear velocity is low there) and maximizes
upstream of the terminator. Beyond the terminator the shear
stress t decreases with distance down the cylinder approx-
imately as x�1/2 as the boundary layer thickens and the
gradients @ux/@y weaken.
[62] The total viscous shear force Fvisc on the magneto-

sphere is obtained by integrating the shear force per unit
area t over the total surface area of the magnetosphere. For
t = t(x/r) this integral has the form

Fvisc ¼ 2pr
Zp=2ð Þr

0

th xð Þ sin x=rð Þdxþ 2pr
Zp=2ð Þrþh

p=2ð Þr

tc xð Þdx; ðC19Þ

where th and tc are the shear stress on the surface of the
hemisphere and of the cylinder regions, respectively. It is
convenient and traditional to express the total viscous force
in terms of a dimensionless coefficient of viscous drag Cvisc,
(cf. expression (8)). Expression (8) yields

Cvisc ¼ Fvisc= 1=2ð Þru21 pr2
� �
 �

: ðC20Þ

[63] Running a series of convecting-contracting-grid nu-
merical solutions to the viscous diffusion equation (C4) for
various values of the Reynolds number Re, using the
derivatives @ux/@y obtained in the numerical solutions to
calculate the viscous stress t(x) from expression (C3) and
integrating t(x) over the surface area of the magnetosphere
according to expression (C19) to obtain the viscous drag
force Fvisc on the magnetosphere, the coefficient of viscous
drag Cvisc as a function of Re is obtained from expression
(C20). This coefficient is then plotted in Figure 20. As can
be seen, at higher Reynolds numbers (which is, at lower
values of the kinematic viscosity nkin), the coefficient of
viscous drag is less, so the viscous drag force on the
obstacle is less. A fit to the simulation data points in Figure
20 yields

Cvisc ¼ 13:3Re�1=2: ðC21Þ

The reader is reminded that Re = u1d/nkin.
[64] As a test of this method of calculating Cvisc, when the

integration of expression (C19) is carried out only over the
hemisphere (from x/r = 0 to x/r = p/2), the viscous drag
coefficient for the hemisphere is obtained as Cvisc =
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6.8Re�1/2: this value agrees well with published calculations
for the viscous drag of a sphere Cvisc = 6.3Re�1/2 [El-
Shaarawi et al., 1997], which is approximately equal to the
viscous drag of a hemisphere owing to boundary layer
separation just behind the terminator (q � 105�). As a
further test, turning off the grid compression but still using
ugrid = 0.5u0x for the grid velocity, this method yields Cvisc =
1.59Re�1/2 for a flat-plate-shaped obstacle, which agrees
well with theoretical solutions of the Navier-Stokes bound-
ary layer equations for a thin flat plate. For the thin plate,
this method would agree exactly with the Blassius theory
Cvisc = 1.33Re�1/2 (e.g., equation (2.5) of Schlichting
[1979]) if ugrid = 0.35u0x would be taken for the grid
velocity and it would agree exactly with the parabolic-flow
model Cvisc = 1.46Re�1/2 (e.g., equation (9.18) of Naka-
mura and Boucher [1999]) if ugrid = 0.42u0x would be taken
for the grid velocity.
[65] Note that if there is slip at the surface of the

obstacle owing to internal convection of the fluid obstacle,
then Cvisc is lower than that of expression (C20). Such a
case is pertinent for the magnetosphere, as it is for liquid
drops moving in air and for bubbles moving through fluids
[e.g., El-Shaarawi et al., 1997; Juncu, 1999]. The drag
force is insensitive to the density ratio of the fluid obstacle
to the exterior fluid [Feng and Michaelides, 2001]. Differ-
ences in the coefficient of viscous drag Cvisc for solid
spheres, liquid drops, and bubbles are about an order of
magnitude at high Reynolds number [e.g., Feng and
Michaelides, 2001].

Figure 19. A computation of the viscous shear stress t on the magnetosphere (normalized to (1/2)ru1
2 )

is plotted as a function of the distance from the nose of the magnetosphere.

Figure 20. The coefficient of viscous drag for an obstacle
shaped as a hemisphere of radius r followed by a cylinder of
length 2r is plotted as a function of the Reynolds number
R = u1d/n. Each point is from a computation with a
compressible grid convecting from the nose of the magneto-
sphere to the distance 2r past the terminator.
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